
Towards Application Programming Interfaces for Cloud
Services Orchestration Platforms in Computer Games

Markus Schatten, Igor Tomičić, Bogdan Okreša Ðurić
Artificial Intelligence Laboratory

Faculty of Organization and Informatics
Pavlinska 2, 42000 Varaždin, Croatia

{markus.schatten,igor.tomicic,dokresa}@foi.hr

Abstract. Services orchestration platforms which
allow for the implementation of scalable, distributed
and containerized multi-agent systems are gaining
momentum. Lots of contemporary computer games,
especially massively multi-player on-line (MMO)
games and game streaming platforms are such systems
and can have major benefits in using orchestration
platforms. In order for a game to use such a platform
its game engine has to have the necessary prerequisites
including an application programming interface (API)
which we analyze in this paper. Additionally, we
provide four proof-of-concept implementations of such
APIs in four different game development platforms
(namely Godot, RPG Maker, Ren’Py and Blender
Game Engine).

Keywords. services orchestration, computer games,
multi-agent systems, game engine, application pro-
gramming interface

1 Introduction
The challenge of building scalable, robust, large appli-
cations that can be incrementally upgraded, yielded a
need for a concept called microservices (Fowler and
Lewis, 2014). Within such concept, the core func-
tionality of an application is decomposed into many
smaller units, usually packed as containers, that are in
some way able to communicate within themselves.

As (Khan, 2017) notes, such applications can be
"composed of clusters of hundreds of instances of con-
tainerized services", and the cluster of containers must
be "fault tolerant, available, and potentially geograph-
ically dispersed". Because of the sheer complexity of
such systems, the notion of orchestration platforms be-
came highly significant within the domain – such plat-
forms can simplify container management and are gen-
erally used for integrating and managing containers
at scale. Some of the general container orchestration
platforms in use at the time of this writing are Ku-
bernetes, Amazon Elastic Container Service, Docker
Swarm, Mesosphere Marathon, RancherOS, etc.

Blanchet et al. (Blanchet et al., 2005) introduce

an intelligent-agent framework where web services are
wrapped in a conversation layer and service orchestra-
tion is presented as a conversation among intelligent
agents, each of which is responsible for delivering ser-
vices. Their effort was to avoid inflexible composition
evolution where all parties must be updated concur-
rently in order to avoid interaction problems.

Hahn and Fischer (Hahn and Fischer, 2007) present a
model-driven approach to design interoperable holonic
multiagent systems in Service-oriented Architectures,
illustrating how a choreography model can be easily
conceptually implemented through holons.

On the other hand, computer games as applications
are usually monolithic with a thick client handling most
of the computations. Network based games including
massively multi-player on-line (MMO) and streamed
games only recently shifted their attention to microser-
vices, and there are not many reports on using orches-
tration platforms for game servers and game system ar-
chitectures. For example (Yahyavi and Kemme, 2013)
note only three types of system architectures for MMO
games: (1) client-server; (2) distributed multi-server
and (3) peer to peer. The distributed multi-server ar-
chitecture is most closely related to the concept of mi-
croservices, but not equivalent. According to (Yahyavi
and Kemme, 2013) there are two types of such an archi-
tecture: (a) shards - each server contains an own copy
of the game world and (b) one world - each server con-
tains only one part of the game world. An industry
expert (Walker, 2020) mentions even six types of game
server architecture patterns:

Monolithic Architecture resembles a server on
which the entire game is implemented in a single
process on a single computer. First-person-
shooters like Quake 2, Unreal Tournament,
Counter Strike and Call of Duty use such a
pattern.

Distributed Network Connections pattern usually
implements a server which accepts and manages
client connections in order to multiplex client
network traffic to several game servers (other
names for such a server are connection server,

Figure 1: Responsibility-Oriented Game Server (Walker, 2020)

user server, gateway server, front-end server or
player server). Most commercial MMO games
use this kind of pattern.

Client Side Load Balancing is an implementation
pattern in which the game client contains a mech-
anism to randomly choose between a number
of available connection servers described above.
Some large-scale MMO game solutions use this
kind of pattern.

Map-Centric Game Server (Walker, 2020) describes
this pattern as follows: "Develop a map-centric
game server strategy that concentrates core game
play activity with the maps in which it occurs. Do
this by creating two server types, area server and
world server. The game’s server cluster contains
many area server processes connected to a sin-
gle central world server process. One or more
connection servers generally manage client net-
work connections, but are not part of this pat-
tern.". From our perspective these area and world
server types could be viewed as service types in
an orchestrated architecture. Such an implemen-
tation pattern is used by Richard Garriott’s Tabula
Rasa, Hero Engine (an MMO server framework)
and Face of Mankind.

Seamless World Game Server is a variant of the pre-
vious pattern in which the world map is divided
into smaller region maps distributed across a uni-
form server grid. Such a pattern is used by games

like Ultima Online, Ultima Online 2 (cancelled),
the mentioned Hero Engine and Star Wars Galax-
ies.

Responsibility-Oriented Game Server is a pattern in
which server types responsible for specific sub-
sets of game play functionality (like gameplay,
artificial intelligence (AI), visibility, physics,
game state directory etc.) are defined. Such a
pattern is used by Rift (Trion Worlds) and Lin-
eage. This type of architecture closely resembles
the idea of a microservices architecture as shown
on figure 1.

In the following we will argue that orchestration
platforms, especially when modeled and implemented
as holonic and organization centered multiagent sys-
tems (MASs) can profoundly benefit the implementa-
tion of game server architectures by introducing vari-
ous out-of-the-box features which are usually manually
implemented in MMO game servers.

The rest of this paper is organized as follows: firstly
in section 2 we provide an overview of requirements for
both orchestration platforms and game engines to make
a large-scale system work. In section 3 we provide four
proof-of-concept game implementations that allow us-
ing existing microservices on any given orchestration
platform. In the end in section 4 we draw our conclu-
sions and provide guidelines for future research.

2 Requirements Definition

As already outlined in the introduction, a microservices
orchestration platform allows for building scalable, ro-
bust, large applications that can be incrementally up-
graded (Fowler and Lewis, 2014). In order to imple-
ment a computer game that make use of such an archi-
tecture, there are a number of requirements that have
to be adhered and a number of features the actual game
engine has to offer.

In the following we will describe a cloud service or-
chestration platform as a holonic multi-agent organi-
sation or holarchy (see Horling and Lesser, 2005; Ro-
driguez et al., 2011). The latter idea, describing ser-
vices as holons (agent that can be comprised of other
agents), provides for the mechanism of nesting ser-
vices, i.e. making it possible for the platform to run
services either as individual services (agents) or com-
plex organizations of agents. In this way it is possible
to define multiple levels of holonic organization (see
Schatten, 2014 and Schatten, 2013 for details on this
approach).

The platform that contains several redundant agents
is therefore the back-end of the platform described in
this paper. Such agents consist of a chosen process, an
input, and an output and can be instanced on demand
– usually when load on a given agent becomes to high
for it to process it adequately. Holons are, therefore,
the structure of the back-end module of the cloud ser-
vices orchestration platform - they take care of instanc-
ing agents when there is need, provide communication
and coordination facilities and load balancing. Usu-
ally orchestration platforms are invisible to the client –
the client communicates with a service (an agent in our
case) which might be just one such service in an ensem-
ble of agents in the background. Thus, any service that
could be offered through the network can be orches-
trated in this way, and this includes various aspects of
gameplay. Thus, for a game engine in order to com-
municate with a microservice orchestration platform it
needs to feature a simple application programming in-
terfaces (APIs) that is able to communicate with a ser-
vice needed by the game engine. Most prominent pos-
sible APIs are representational state transfer (REST),
Web Socket or NetCat (simple TCP or UDP connec-
tions) that will enable developers to implement con-
nections between their game and the cloud services or-
chestration platform. Therefore, in most game devel-
opment engines all necessary prerequisites are already
established since most engines allow for various types
of network connections.

On the other hand, in order to make a game that puts
an orchestration platform to good use, there are a num-
ber of requirements on the actual game architecture.
The most important one is modularity – possibly imple-
mented to an actor model (which is basicaly an agent
model just in terms of game development usual termi-
nology) in which each actor connects to some kind of

service (agent) in order to act upon the game world and
react to certain game events. Thus, an agent based ap-
proach to implementing both games and their neces-
sary server architecture allows us to handle fairly com-
plex terminology in terms of agents communicating.
coordinating, competing etc.

Networked game server architectures including
MMO and game streaming services can have major
benefits from using a containerized microservices or-
chestration platform. Khan, 2017 outline that there
are seven key capabilities of a container orchestration
platform:(1) cluster state management and scheduling,
(2) providing high availability and fault tolerance, (3)
ensuring security, (4) simplifying networking, (5) en-
abling service discovery, (6) making continuous de-
ployment possible, (7) providing monitoring and gov-
ernance – all of which would have to be implemented
manually when implementing a game server architec-
ture from scratch. Thus, orchestration services pro-
vide game backend developers and administrators with
a higher-level of abstraction in implementing their de-
sired architecture.

3 Proof-of-concept Examples
In the following we will present four proof-of-concept
APIs which were made in four different game engines
for a number of games which have been developed
or are in development. As already stated most gen-
eral game engines already have the necessary prerequi-
sites for communicating with services. Herein we will
show how such communication can be established with
four game engines: Godot, RPG Maker, Ren’Py and
Blender Game Engine.

3.1 Godot
Godot is a cross-platform, free and open-source game
engine that allows for the implementation of both 2D
and 3D games (Wikipedia contributors, 2020b). Fig-
ure 2 shows the main graphical user interface (GUI) of
Godot when a game project is loaded.

Figure 2: Godot – main user interface

As an example we have created a simple role-playing
game (RPG) like game in which each non-player char-
acter (NPC) interacts with the player and gives her/him

simple tasks to solve. Figure 3 shows the main screen
of the game.1.

Figure 3: Godot – proof-of-concept game Braainz
needed!!!

Godot can use a number of progamming languages
to implement the actual game, but the default language
is GDScript. Listing 1 shows how communication
to a server can be implemented by using the built-in
HTTPRequest object.

Listing 1: Excerpt from game code related to server
connection

func get_message():
var data = RQ_RESULT.result
if data:
data[0]["msg"] = data[0]["msg"

↪→].replace(’\\n’, ’\n’)
if data[0]["cmd"] == "giveItem":
emit_signal("give_item",NAME)
DONE = true
return data[0]
return { "msg":"Zombies ate my brain!!!\

↪→ nCan you program me a new one?\
↪→ nPretty please ...?", "btns":"
↪→ Exit", "cmd":"null"}

func send_request(caller):
CALLER = caller
$HTTPRequest.request("http://localhost

↪→ :2709/query/" + NAME.
↪→ percent_encode() + "/" +
↪→ LAST_COMMAND)

func _on_HTTPRequest_request_completed(
↪→ result, response_code, headers,
↪→ body):

RQ_RESULT = JSON.parse(body.
↪→ get_string_from_utf8())

CALLER.show_message(self)

3.2 RPG Maker
RPG Maker is a tool for creating 2D RPG games
(Wikipedia contributors, 2020d). Figure 4 shows the

1The game uses art by Deesiv @ Deviantart, and is based on an
example game by Filipe Mice.

main interface of RPG Maker MV.

Figure 4: RPG Maker – main user interface

In its current version (RPG Maker MV) the scripting
language of choice is JavaScript which makes commu-
nication to various types of services fairly easy. For this
proof-of-concept game we have implemented a simple
greeting card game for Christmas shown on figure 5.2

Figure 5: RPG Maker – proof-of-concept game Marry
X-Mas

In order to communicate to a REST service, one can
use the built-in XMLHttpRequest and JSON objects to
communicate and parse results respectively, as shown
in listing 2.

Listing 2: Excerpt from game code related to server
connection

$gameMessage.setFaceImage(’Actor1’,0);
$gameMessage.setBackground(1);
$gameMessage.setPositionType(2);
let xhr = new XMLHttpRequest();
xhr.open(’GET’, ’http://localhost:5000/

↪→ query/ivek’, false);
xhr.send();
var ans = JSON.parse(xhr.response)
$gameMessage.add(ans[’msg’])

3.3 Ren’Py
Ren’Py is an open source visual novel engine written
in Python (Wikipedia contributors, 2020c). The main

2The game contains a number of game resources avaliable on-
line, namely Deep male burp sound by Mike Koenig, Jingle Bells
by Kevin MacLeod, Christmas sprites by PandaMaru, Santa face by
Idril’s Grove, Santa sprite by slimmmeiske2.

interface of Ren’Py is shown on figure 6.

Figure 6: Ren’Py – main user interface

As a proof-of-concept game we have implemented
a visual novel game (which is still work in progress)
shown on figure 7.

Figure 7: Ren’Py – proof-of-concept game h4X0r

Ren’Py uses its Animation and Translation Lan-
guage and its Screen Language for game implemen-
tation, but it is possible to embed Python code into the
script. Listing 3 shows an example of how Python code
inside Ren’Py script can be used to access a REST ser-
vice by using Python’s urllib and json modules.

Listing 3: Excerpt from game code related to server
connection

init python:
import urllib.request, json
def get_request(req):
with urllib.request.urlopen("http://

↪→ localhost:8001/q=%s" % req) as
↪→ url:

data = json.loads(url.read().decode()
↪→)

return data

config.grequest = get_request

3.4 Blender Game Engine / UPBGE
Blender Game Engine (BGE) component of Blender,
a free and open-source 3D production suite, used

for making real-time interactive 3D and 2D games
(Wikipedia contributors, 2020a). Since BGE was dis-
continued, UPBGE (Uchronia Project Blender Game
Engine) which is a fork of Blender has been develop-
ing the engine further. The main user interface (UI) of
UPBGE is shown on figure 8.

Figure 8: Blender Game Engine – main user interface

We have created a small proof-of-concept game in
UPBGE shown on figure 9.3

Figure 9: Blender Game Engine – proof-of-concept
game Monkey Doghnut

Since BGE and consequently UPBGE uses Python
as its main implementation and scripting language, the
implementation of a sensor communicationg with a
service is straightforward and similar to the Ren’Py im-
plementation (listing 4).

Listing 4: Excerpt from game code related to knowl-
edge base connection

from bge import logic
import urllib.request, json

def query(req):
with urllib.request.urlopen("http://

↪→ localhost:8001/q=%s" % req) as
↪→ url:

data = json.loads(url.read().decode()
↪→)

return data

3The game uses the Public Domain image of a monkey by
frankes.

def main():
if ctrl.sensors[’eating’].positive:
act = ctrl.actuators[’njam’]
ctrl.activate(act)
x.query(’add_one’)
result = x.query(’finished’)
if result:
act = ctrl.actuators[’finish’]
ctrl.activate(act)

4 Conclusion
In this paper we have argued that containerized mi-
croservices orchestration platforms can benefit game
server architectures on a number of ways by allow-
ing to use already established services provided by the
orchestration platform. We have shown that both the
backend server-side as well as the actual game engine
can (and should) be modeled and implemented as a
(holonic) multi-agent system. In this way the same
simplified and much more human understandable ab-
straction is used in both sides of the development.

We have also argued that most general game engines
already provide the necessary prerequisites for imple-
menting game infrastructures as orchestrated systems,
namely: (1) support for actor model (i.e. agent model)
and (2) network communication abilities.

In the end we have provided four proof-of-concept
games implemented in four different game engines
to show how simple it is to implement orchestration
server communication from a game engine, since or-
chestration server behave as simple REST, WebSocket
or even Netcat (TCP / UDP) services. Additionally,
programming examples have been shown for the inter-
ested reader to try out.

Our future research will be focused on implementing
valid APIs for a number of game engines to communi-
cate with an orchestration platform focused on hybrid
artificial intelligence (HAI) services that shall be im-
plemented as part of the O_HAI 4 Games project
sponsored by the Croatian Science Foundation.

Acknowledgement
This work has been fully supported by the Croatian
Science Foundation under the project number IP-2019-
04-5824.

References
Blanchet, W., Stroulia, E., & Elio, R. (2005). Sup-

porting adaptive web-service orchestration
with an agent conversation framework, In
Ieee international conference on web services
(icws’05). IEEE.

Fowler, M., & Lewis, J. (2014). Microservices a
definition of this new architectural term.
URL: http://martinfowler. com/articles/mi-
croservices. html, 22.

Hahn, C., & Fischer, K. (2007). Service composition
in holonic multiagent systems: Model-driven
choreography and orchestration, In Interna-
tional conference on industrial applications
of holonic and multi-agent systems. Springer.

Horling, B., & Lesser, V. (2005). A survey of multi-
agent organizational paradigms. The Knowl-
edge Engineering Review, 19(04), 281. https:
//doi.org/10.1017/S0269888905000317

Khan, A. (2017). Key characteristics of a container or-
chestration platform to enable a modern appli-
cation. IEEE cloud Computing, 4(5), 42–48.

Rodriguez, S., Hilaire, V., Gaud, N., Galland, S.,
& Koukam, A. (2011). Holonic Multi-Agent
Systems (G. Di Marzo Serugendo, M.-P.
Gleizes, & A. Karageorgos, Eds.). In G.
Di Marzo Serugendo, M.-P. Gleizes, &
A. Karageorgos (Eds.), Self-organising Soft-
ware: From natural to Artificial Adaptation.
Berlin, Heidelberg, Springer. https://doi.org/
10.1007/978-3-642-17348-6_11

Schatten, M. (2013). Reorganization in multi-agent
architectures: An active graph grammar ap-
proach. Business Systems Research Journal,
4(1), 14–20.

Schatten, M. (2014). Organizational architectures
for large-scale multi-agent systems’ develop-
ment: An initial ontology, In Distributed com-
puting and artificial intelligence, 11th inter-
national conference. Springer.

Walker, M. (2020). Game server architecture patterns
[[Online; accessed 15-July-2020]].

Wikipedia contributors. (2020a). Blender game engine
— Wikipedia, the free encyclopedia [[On-
line; accessed 17-July-2020]]. https : / / en .
wikipedia.org/w/index.php?title=Blender_
Game_Engine&oldid=967025085

Wikipedia contributors. (2020b). Godot (game engine)
— Wikipedia, the free encyclopedia [[Online;
accessed 15-July-2020]].

Wikipedia contributors. (2020c). Ren’py — Wikipedia,
the free encyclopedia [[Online; accessed 15-
July-2020]]. https : / / en . wikipedia . org /
w / index . php ? title = Ren % 27Py & oldid =
960243958

Wikipedia contributors. (2020d). Rpg maker —
Wikipedia, the free encyclopedia [[Online;
accessed 15-July-2020]]. https : / / en .
wikipedia . org / w / index . php ? title = RPG _
Maker&oldid=967986970

Yahyavi, A., & Kemme, B. (2013). Peer-to-peer ar-
chitectures for massively multiplayer online
games: A survey. ACM Computing Surveys
(CSUR), 46(1), 1–51.

https://doi.org/10.1017/S0269888905000317
https://doi.org/10.1017/S0269888905000317
https://doi.org/10.1007/978-3-642-17348-6_11
https://doi.org/10.1007/978-3-642-17348-6_11
https://en.wikipedia.org/w/index.php?title=Blender_Game_Engine&oldid=967025085
https://en.wikipedia.org/w/index.php?title=Blender_Game_Engine&oldid=967025085
https://en.wikipedia.org/w/index.php?title=Blender_Game_Engine&oldid=967025085
https://en.wikipedia.org/w/index.php?title=Ren%27Py&oldid=960243958
https://en.wikipedia.org/w/index.php?title=Ren%27Py&oldid=960243958
https://en.wikipedia.org/w/index.php?title=Ren%27Py&oldid=960243958
https://en.wikipedia.org/w/index.php?title=RPG_Maker&oldid=967986970
https://en.wikipedia.org/w/index.php?title=RPG_Maker&oldid=967986970
https://en.wikipedia.org/w/index.php?title=RPG_Maker&oldid=967986970

