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Abstract. Many graph database management systems 

have been designed over the past years because of their 

suitability in special usage scenarios and their 

performance of read and write operations. To 

successfully implement them into an existing system or 

an application, users must often compare various 

graph database systems and their effectiveness. 

Because of their specific characteristics and data 

model, it is challenging to create a benchmark that is 

adequate for graph databases in required use cases 

and scenarios. This paper describes the common 

queries and operations in graph database systems and 

enumerates their important features. Also, it defines 

the desired characteristics of graph database 

benchmarks and describes the most popular 

benchmarks for different database management 

systems. 
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1 Introduction 

Organizing data in graphs has become a common way 

to help analyzing data like social network data, 

computer network data, travelling data etc. The amount 

of data that are stored in graphs is huge and algorithms 

used for analyzing those graphs and data are pretty 

complex in most cases. For example, two of the most 

popular social networks, Facebook and Twitter, have 

about 400 billion and 60 billion edges, respectively 

(Ching et al., 2015). Graph Database Management 

Systems are of great help when it comes to working 

with data structures which are shown in the shape of 

graphs or some generalization of graphs. 

Graphs in general are found to be difficult to work 

with, especially when it comes to working with 

enormous number of data and data connections stored 

in large graphs. Both researchers and the ones who are 

dealing with graphs and graph databases are working 

on many Graph Database Management Systems whose 

main purpose is to make working with data stored in 

graphs less complex and demanding. Ching et al. 

(2015) made scalability improvements to use it on 

graphs up to one trillion edges. They also introduced 

processing techniques for graphs, that allowed them to 

make graph databases applicable in new industries, and 

works on more efficient graph partitioning algorithms. 

Hong et al. (2015) designed indexes for graph data and 

signatures for vertices on basis of which a new strategy 

that uses the specific features of weighted set family 

and graph topology is created. In addition to this, they 

introduced an efficient subgraph matching algorithm to 

improve query performance. As one of the properties 

of graph databases are frequent changes that are made, 

Bok et al. (2017) made up with a dynamic partitioning 

scheme of Resource Description Framework (RDF) 

graph. The scheme creates clusters and subclusters that 

achieve load balancing, which are based on the average 

frequency of queries for observed server. Also, they 

minimized the number of edges to reduce the costs of 

transmission between servers. 

The main purpose of this paper is to review Graph 

Database Management Systems benchmarking and to 

characterize forms which should be thought-about 

when benchmarking. 

In this paper, important features od graph databases 

are explained and features that are found in large 

graphs. Applications of graph data and graph databases 

are also described as it is important to understand 

where graph databases are actually used and in which 

domains they are especially useful. In the next chapter, 

popular benchmarks for relational, object oriented, 

Extensible Markup Language (XML) and graph 

databases, and RDF, are presented. Next, the elements 

that should be considered when designing benchmark 

are defined. In the end, conclusions will be made 

regarding review of previously made researches. 

2 Graph databases 

To understand the importance of adequate benchmark, 

this chapter gives a brief description of the way data is 



stored in graphs and explains the most important 

features of graph databases.  

2.1 Important Features of Graph 

Databases 

In graph databases, entities are stored as nodes. There 

are relations between entities and they are represented 

with edges. Not all graph databases are the same since 

the complexity of data that is stored effects on the 

complexity of graphs. However, features that are 

required by most popular applications are attributes, 

direction, node and edge labelling, multigraphs and 

hypergraphs (Dominguez-Sat et al., 2011).  

Attributes contain additional information linked to 

nodes and edges, commonly string or numerical values. 

When taking observing relation between nodes, it can 

be symmetric or asymmetric. Symmetric relation 

means that the edge may be passed through from any 

of node to opposite one and if it is not symmetric, edges 

have both beginning and the end, so called the head and 

the tail. There are also undirected graphs, where 

undirected edge is shown as two directed edges. 

Different types of nodes and edges are also 

common in some applications. Node and edge labelling 

identifies distinct kinds of relations. 

Multigraphs and hypergraphs are special kinds of 

graphs. In multigraphs, two nodes are possibly 

connected by multiple edges, and in hypergraphs, 

edges are replaced with hyperedges (which are 

composed of unreasonable number of nodes). 

2.2 Common Features Found in Huge 

Graphs 

Data represented in graph in real life is much different 

than standard graphs by definition. Mostly, it is 

because datasets are huge and number of edges is 

bigger than anyone could imagine. However, 

characteristics that are frequently found in large graphs 

are that they contain more edged than it is expected to 

be the maximum number of edges in a graph and there 

is a power law distribution which means that some 

nodes have more connections then there are expected 

to occur. 

Also, in huge graphs there is a small diameter which 

reassures a short path to most other nodes in small 

world property. There is a large connected component 

found in great fraction of nodes and nodes are grouped 

in clusters with big density of edges between them 

(Chakrabarti & Faloutsos, 2006). 

2.3 Applications of Graph Data and 

Graph Databases 

With the technology growth and increase in amount of 

information in general, the need for storing large 

amount of data has occurred. Both scientists and people 

who work in those industries find graphs and networks 

suitable for organizing and representing large amount 

of data where nodes stand for entities and edges 

represent relationships between those entities. 

One on the most popular datasets that is considered 

to best fit in graphs are organizations and social groups, 

and with increase of usage of social media, social 

networks are also one of the most popular examples of 

graph data. 

One of the most successful tools to examine the 

architecture of different kinds of social groups is Social 

Network Analysis. Social Network Analysis is focused 

on determining the pattern of people’s interaction. It is 

done by following mathematical algorithms and 

systematic analysis of empirical data. However, it has 

applications in organizational behaviour, spread of 

contagious diseases, social support, mental health, 

diffusion of information and animal social 

organization, counter terrorism, viral marketing etc  

(SNA, 2020). 

With the increasing use of social networks where 

people can interact with each other and share 

information, it has become important to have 

possibility to track all the relationships and also 

interactions. Interactions can also be found in library 

catalogues or scientific paper repositories. 

World Wide web is also one of examples that can 

be viewed as a directed graph with its nodes and edges 

(Kumar et al., 2000). This graph has more than one 

billion nodes and is expected that the number of nodes 

and edges will grow exponentially with time. It is 

observed for many reasons, primarily mathematical, 

sociological and commercial. 

In addition to World Wide Web, some other web 

pages that are organized like huge networks or graphs 

should be mentioned. Some of them are Wikipedia, 

Amazon, Google etc. which are the best example of 

nodes and connections between them, that can 

represent various of things, maybe in most researches 

they try to track interest of users by giving them 

additional information they could be interested in, 

followed by links where they can find those 

information. 

Scientists dealing with new trends in data mining 

also find graph data and graph database features 

interesting (Chakrabarti & Faloutsos, 2006). They tend 

to analyze social roles and interactions, and graph 

databases help them manage data, but also graph 

generators create synthetic but enough realistic graphs 

which follow the patterns in real-world graphs. 

Large studies of proteins and genetic interactions 

are presented with interaction networks where nodes 

represent proteins. An example of database which 

demonstrates the complexity of graph data is Protein 

Data Bank (PDB) and many researches on nodes and 

relationships between them but also roles in those 

protein networks can be made based on that kind of 

data (PDB, 2020). 

Another real-life example is traffic and 

demonstration of cities or places people can visit. In 

that cases, nodes represent places, and edges show 

https://dl.acm.org/doi/10.1145/335168.335170
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connections between them. The understanding of 

graphs could help users find the best or quickest or 

cheapest route to plan their journey. 

3 Popular Benchmarks 

During ages, relational databases were standard and as 

a result, the most of database benchmarks are meant to 

appraise relational database queries. Those 

benchmarks highlight queries with selections, joins and 

sorting operations. As the use of graph databases is 

starting to be more frequent and graph databases focus 

on different types of queries than relational databases, 

benchmarks made for rational databases are not 

appropriate for measuring their efficiency.  

3.1 Relational Databases 

When talking about relational database benchmark, 

one of the most popular benchmarks are TPC-C and 

TPC-H, both products of TPC (Transaction Processing 

Performance Council), an organisation whose main 

activities are creating benchmarks and creating 

processes for monitoring benchmarks they created 

(TPC, 2020). TPC-C benchmark describes the whole 

environment in which users perform activities. It 

represents only five most commonly used transactions 

(in wholesale supply system), but is not meant for any 

specific industry. Although it is mostly use to represent 

industries that sell or distribute a product. On the other 

hand, TPC-H simulates decision support system that 

works with large amount of complex data and it 

represents all kind of industries. 

Benchmarking tools that are based of TPC-C 

simulate workload of more users with one machine and 

most of them are made for a single database 

management system. Therefore, benchmark logic 

should be adjusted to database management system’s 

properties or should be even implemented in it (Lima 

et al., 1970). 

3.2 Object Oriented Databases 

Relational databases and graph databases have many 

differences, but object-oriented databases and graph 

databases have more in common. Data stored in object-

oriented databases can be understood as a graph, but 

with objects and relationships between them instead of 

nodes and edges. 

One of the most common benchmarks for object-

oriented databases is OO1 (Object Operation 1). The 

OO1 benchmark evaluation includes measures for 

inserting objects (adding a set of objects and relations 

between them to database), looking up objects (finding 

set of object for specific object identifier) and 

traversing connections between them (performing 7-

hop operation that starts at any given node). It is 

designed so it can be applied to object-oriented, 

relational, network or hierarchical database systems 

and even some custom application-specific database 

systems (Cattell & Skeen, 1992). When working with 

object-oriented databases, OO1 determines dataset that 

consists of one type of object with firmed number of 

edges. Graphs that are made of those kinds of objects 

are mostly regular. 

OO7 is also commonly used benchmark for object-

oriented databases. The database consists of three 

different types of objects that form a tree whose depth 

is seven and all objects have firm number of relations 

between them. OO7 contain traversal queries and 

general queries. It is more complex and thorough then 

OO1, and it was designed to support multiuser 

operations (Carey et al., 1993). 

Even though object-oriented databases form graphs, 

those graphs are much different than typical data that 

is stored in graph databases. As mentioned before, 

graphs in graph databases are mostly irregular, as the 

number of nodes can vary a lot and they are also 

creating clusters with small diameters. When analyzing 

graph data, relationships are of great interest (shortest 

path, patterns etc.), and in object-oriented databases 

more attention is given to objects and their attributes. 

3.3 XML Databases 

XML databases are another type of databases which 

go after model that relate entities. In XML databases, 

data and attributes form a tree. XMark is a popular 

benchmark for XML databases that is designed by 

taking XML standards in consideration. The queries 

round up basics of XML processing in database 

management systems. Some of them are querying for 

NULL values, full-text search, sorted data, path 

expressions etc (Schmidt et al., 2002). 

XML databases and graph databases have some 

similarities, but XML forms trees which are only one 

subbranch of graphs. 

3.4 Resource Description Framework 

Web researchers, developers and scientists 

introduces a language to represent metadata on the 

Web, and it is known as Resource Description 

Framework (RDF). From database perspective, RDF is 

considered to be an extension of data models used in 

database management systems, mostly in graph 

database models, as a collection of conceptual tools 

that describe real-world entities (in most cases those 

entities are metadata on the Web) (Angles & Gutierrez, 

2005). 

Together with RDF, knowledge community has 

come up with SPARQL, a query language that helps 

describe relationships between entities. There is a 

benchmark for SPARQL queries, called LUMB, which 

is actually a benchmark for OWL (Web Ontology 

Language) Knowledge Base Systems that is part of 

W3C’s Semantic Web Technology stack and includes 

RDF, SPARQL, etc (Guo et al., 2005).  

http://www.tpc.org/default5.asp
http://cattell.net/vita/Cattell-TODS.pdf
http://pages.cs.wisc.edu/~dewitt/includes/benchmarking/oo7.pdf
http://resources.mpi-inf.mpg.de/departments/d5/teaching/ss03/xml-seminar/Material/SWKCMB02.pdf
https://link.springer.com/content/pdf/10.1007/11431053_24.pdf


3.5 Graph databases 

Since graph databases are much younger than for 

example relational databases, there are less 

benchmarks for graph database models. The most 

popular benchmark meant for measuring efficiency of 

graph data is High Performance Computing (HPC) 

Scalable Graph Analysis Benchmark (Bader et al., 

2009). 

3.5.1 HPC Scalable Graph Analysis Benchmark 

HPC Scalable Graph Analysis Benchmark was 

designed by scientists and researchers in collaboration 

with developers from several companies. They tried to 

gather the most commonly used and therefor the most 

representative operations, like graph loadings, graph 

traversals and short navigations (Dominguez-Sal et al., 

2010). 

This benchmark is made of different operations over 

graph data and it simulates a power law distribution. 

The operations are: insertion of a graph database, 

restoring edges whose weight is the greatest, 

performing k-hops and measuring the number of edges 

traversed per unit of time. 

3.5.2 LinkBench 

LinkBench is a new synthetic database benchmark 

based on the Facebook social graph. It is based on 

traces from making databases storing social graph data 

at Facebook and reflects real-world database 

workloads for social applications. It is known that data 

gathered from social networks is one of the typical data 

stored in graph databases. 

 LinkBench operates in two phases. First, it 

generates and bulk-loads a synthetic social graph. 

Then, it benchmarks the graph that is stored with 

generated workload of database queries and takes 

statistics about how efficient it is. All parts of process 

have many parameters that can be changed to examine 

the workloads that have other characteristics 

(Armstrong et al., 2013). 

4 Graph Database Benchmark 

Evaluation 

When creating a graph database benchmark, there are 

few elements that should be considered. Most 

important is the structure of graph database and graphs 

itself. Then, benchmark designer should also take care 

of fields of business that are most likely to use graph 

database and which queries are expected to be used in 

those cases. Graph structure and most frequently used 

graph types are presented in chapter 2, and in this 

chapter the other elements are described. 

4.1 Types of Graph Operations 

There are few types of operations used in fields that 

are most frequently expected to be organized as graphs. 

Those are operations that can useful in any framework. 

They let us get information from graph (node, value of 

an attribute, neighbour nodes) or they let us create, 

change or delete graph or part of the graph. Operations 

that are mentioned need to be broaden in order to be 

adequate for use in examples from previous chapter. 

Operations can be grouped by types: traversals, 

connected components, communities, graph analysis, 

centrality measures, pattern matching and graph 

anonymization (Dominguez-Sal et al., 2011).  
One of the typical operations are traversals. These 

are operations that examine the neighbourhood of a 

node following recursive principal until assigned depth 

or node is hit (Ciglan et al., 2012). There is a difference 

in traversals in directed and undirected graph because 

in directed graphs the direction is set from tail to head.  

One of traversals is also finding shortest path or 

cheapest journey. k-hops are other common traversals, 

and by calculating k-hops is meant to find out which 

nodes are k nodes away from the root node. 

Connected components are subsets of nodes for 

which there is a connection between any of two nodes. 

Therefore, a single node can be part only of one 

connected component of the graph. In many examples, 

to determine connected components or bridges that are 

crucial for making components connects, is of great 

significance. 

Similar to connected components, communities are 

set of nodes that are closer to each other than to any of 

the nodes that are not part of the community. It is 

definitely often found in social networks. Subgroup 

could be communities that are made of clusters where 

hierarchy is of great importance. Leskovec et al. that 

the structure of large social and information networks 

follows the pattern of graphs but when adding more 

and more information, actually nodes and edges, the 

community properties start to fade and graph 

partitioning algorithms become unavoidable. 

Graph analysis gives more information about 

topology, complexity and objects that are found in 

graphs. It is done to find patterns in graphs and to get 

more information about role of objects, in this case 

nodes and edges. Part of graph analysis is measuring 

density, diameter, degree of transitivity etc. 

Centrality measures as operation give information 

of how a single node is imbedded in entire network. 

Pattern matching is an operation that recognizes 

patterns and helps fine homomorphisms or 

isomorphisms. 

Graph anonymization gives a duplex graph that has 

much in common with the original graph. It is used 

when datasets are modified to hide personal 

information. 

4.2 Different Query Categories 

Dominguez-Sat et al. (2010) have built few categories 

to group different operation used in a specific database: 

https://www.ac.upc.edu/app/research-reports/html/RR/2010/45.pdf
https://dl.acm.org/doi/pdf/10.1145/2463676.2465296
https://upcommons.upc.edu/bitstream/handle/2117/24027/2010_tpctc.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.716.4053&rep=rep1&type=pdf


transformation/analysis, cascaded access, scale, 

attributes and result. Transformations are operations 

that create new types of objects or change value of an 

attribute. The other queries are analysis. Queries do not 

change the graph but they serve as access to secondary 

storage that is necessary because memory is often not 

big enough for all the results that are generated in 

process of querying. 

Cascaded pattern assume that a query performs 

neighbour operations and that the depth is at least two. 

On the other hand, noncascade operations do not 

request the neighbours of observed node. Scale gives 

two types of queries, global and neighbourhood ones. 

Attributes differentiate queries by the attribute set it 

accesses (edge, node, mixed or no attributes accessed). 

Three types of results are found: graphs, aggregated 

results and set. Most common output is graph which is 

usually part of the original graph. Aggregates are 

frequently histograms, while sets are made of entities 

or some other sets that are not graphs. 

In benchmarking, queries should serve as workload 

of the real surrounding and therefore should be tested 

on the observed application. There are different graph 

operations and queries, but they mostly follow the 

same pattern. Most operations approach edges and 

information that are stored in them which are actually 

the most important information the graph has. Graph 

database should have ability to save different type of 

results in objects that are temporary to help operations 

proceed to the end. Some of the result should be stored 

in graph in order to help analyzing graphs. 

Since some operations are extremely complex, it 

could be impossible to calculate them, so it should be 

taken in consideration that sometimes the approximate 

values could also be useful and satisfying. 

4.3 Experiments 

Dominguez-Sat et al. (2011) also claim that 

experimental setup and measurement make the most 

important parts of benchmark. It should be well defined 

to grant legitimate testing of solutions in different 

environments. As benchmarks have become more 

sophisticated and databases more complex, it is not 

enough for benchmarks to focus on response time of 

queries but also pricing, answer completeness etc. 

New benchmarks let the sizes of datasets to be 

scaled so the comparison is fair. One example of 

scaling is algorithm presented by Leskovec et al. 

(2010). It calculates one specific measure on the basis 

of which synthetic graph that imitates the features of 

desired graph is created. Also, data partition, indexing, 

redundancy and data reorganization should be clearly 

defined. As it is common when working with 

databases, ACID (atomicity, consistency, isolation, 

durability) features should be respected. Experimental 

process is expected to minimize side-effects of other 

events that could affect the experiment results. It is 

done in three phases: computer warm-up, query 

generation (to define order of queries) and 

observational sampling procedure (sets the number of 

executions for queries and how they are compiled). 

Phases can and should be modified depending on goals 

and applications. 

The most common measures in graph benchmark 

are load time, which give the time needed for loading 

the dataset, size of the graph. Also, query response 

time, that represents the time passed until the query 

gives the results, and throughput, which stands for ratio 

of number of queries that are completed and time that 

was required for those queries to be completes. In the 

end, there are price and power consumption. Price 

includes the costs of hardware, software, license and 

other costs that occur, while power consumption 

evaluates demands regarding the use of energy. 

There are some special metrics, for example, HPC 

Scalable Graph Analysis Benchmark came up with 

measure that gives the number of traversals per second. 

On the other hand, Duan et al. (2011) gave another 

measure and called it a macroscopic metric or 

coherence. They worked with RDF benchmarks and 

their measure combines more different primitive 

metrics and measures the structuredness of different 

datasets (Songyun et al., 2011). Measures that can be 

determined in benchmarking are various, but which 

measures are about to be selected depends on 

benchmark and the goals. It is to be expected that 

benchmarks that are done inside industry would pay 

more attention on price (actually, cost of queries) and 

throughput. On the other hand, benchmarks that are 

done in research purposes will more likely expect to 

give answers on how efficient observed operations are 

in different environments. 
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Directed x x     
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Table 1. shows popular benchmarks and their 

supported characteristics or features, with emphasis on 

queries and data structure (Tang, 2016). The tested 

benchmarks include Linked Data Benchmark Council 

(LDBC) benchmark (Angles et al., 2014), HPC and 

McColl benchmark (McColl et al., 2014). 

 First two rows show their support for basic bulk 

and single operations, i.e. insert, select, delete and 

update. ID in cells stands for insert and delete 

operations. 

It can be seen that the most benchmarks do not 

support shortest path operations, breath-first and depth-

first searches. Also, they generally do not support k-

hop operations. This is certainly a great disadvantage, 

because those operations are common in majority of 

graph database usages, but users are not able to 

measure their performance.  

Centrality, a measure of node importance in a 

graph, is supported by all benchmarks except 

XGDBench, which, on the other hand, is the only one 

that supports transactions. 

The last four characteristics refer to the type of 

supported data and potentials of generators of synthetic 

data. As it can be seen from the table, most of the 

observed benchmarks support generation of synthetic 

data and have the possibility to scale them according to 

the benchmark or user needs. Directed graphs are 

supported in two benchmarks and weighted graphs 

only in one benchmark. 

5 Conclusion 

In this paper, important characteristics of graphs 

and graph databases are presented. Also, it is shown 

that there exists a need for designing more specific 

graph database benchmark. One of the main reasons is 

because graphs and graph databases are used in many 

different industries which could gain profit out of it and 

improve their work. 

When designing a benchmark, it should be taken in 

consideration that graph characteristics are important, 

that it is necessary to be informed about the application 

of database and to determine which properties are 

about to be measured. 

Also, different existing benchmarks are presented. 

In future work, it is planned to examine the differences 

in synthetic and real-world workloads, and to compare 

their advantages and disadvantages, but also to give 

recommendations when creating synthetic workloads. 

When examining graphs and their structure, it is 

necessary to find the quickest way to determine 

patterns that occur more often so that communities and 

subgraphs can be found and maybe some insights can 

be made on representative subgraphs instead of the 

graph in whole. 
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