
Characteristics of Graph Database Benchmarks

Vedran Juričić

Faculty of Humanities and Social Sciences, University

of Zagreb

Department of Information and Communication

Sciences

Ivana Lučića 3, Zagreb, Croatia

vedran.juricic@ffzg.hr

Matea Radošević

Faculty of Humanities and Social Sciences, University

of Zagreb

Department of Information and Communication

Sciences

Ivana Lučića 3, Zagreb, Croatia

matea.radosevic@ffzg.hr

Abstract. Many graph database management systems

have been designed over the past years because of their

suitability in special usage scenarios and their

performance of read and write operations. To

successfully implement them into an existing system or

an application, users must often compare various

graph database systems and their effectiveness.

Because of their specific characteristics and data

model, it is challenging to create a benchmark that is

adequate for graph databases in required use cases

and scenarios. This paper describes the common

queries and operations in graph database systems and

enumerates their important features. Also, it defines

the desired characteristics of graph database

benchmarks and describes the most popular

benchmarks for different database management

systems.

Keywords. Graph data, graph database,

benchmarking, benchmark characteristics

1 Introduction

Organizing data in graphs has become a common way

to help analyzing data like social network data,

computer network data, travelling data etc. The amount

of data that are stored in graphs is huge and algorithms

used for analyzing those graphs and data are pretty

complex in most cases. For example, two of the most

popular social networks, Facebook and Twitter, have

about 400 billion and 60 billion edges, respectively

(Ching et al., 2015). Graph Database Management

Systems are of great help when it comes to working

with data structures which are shown in the shape of

graphs or some generalization of graphs.

Graphs in general are found to be difficult to work

with, especially when it comes to working with

enormous number of data and data connections stored

in large graphs. Both researchers and the ones who are

dealing with graphs and graph databases are working

on many Graph Database Management Systems whose

main purpose is to make working with data stored in

graphs less complex and demanding. Ching et al.

(2015) made scalability improvements to use it on

graphs up to one trillion edges. They also introduced

processing techniques for graphs, that allowed them to

make graph databases applicable in new industries, and

works on more efficient graph partitioning algorithms.

Hong et al. (2015) designed indexes for graph data and

signatures for vertices on basis of which a new strategy

that uses the specific features of weighted set family

and graph topology is created. In addition to this, they

introduced an efficient subgraph matching algorithm to

improve query performance. As one of the properties

of graph databases are frequent changes that are made,

Bok et al. (2017) made up with a dynamic partitioning

scheme of Resource Description Framework (RDF)

graph. The scheme creates clusters and subclusters that

achieve load balancing, which are based on the average

frequency of queries for observed server. Also, they

minimized the number of edges to reduce the costs of

transmission between servers.

The main purpose of this paper is to review Graph

Database Management Systems benchmarking and to

characterize forms which should be thought-about

when benchmarking.

In this paper, important features od graph databases

are explained and features that are found in large

graphs. Applications of graph data and graph databases

are also described as it is important to understand

where graph databases are actually used and in which

domains they are especially useful. In the next chapter,

popular benchmarks for relational, object oriented,

Extensible Markup Language (XML) and graph

databases, and RDF, are presented. Next, the elements

that should be considered when designing benchmark

are defined. In the end, conclusions will be made

regarding review of previously made researches.

2 Graph databases

To understand the importance of adequate benchmark,

this chapter gives a brief description of the way data is

stored in graphs and explains the most important

features of graph databases.

2.1 Important Features of Graph

Databases

In graph databases, entities are stored as nodes. There

are relations between entities and they are represented

with edges. Not all graph databases are the same since

the complexity of data that is stored effects on the

complexity of graphs. However, features that are

required by most popular applications are attributes,

direction, node and edge labelling, multigraphs and

hypergraphs (Dominguez-Sat et al., 2011).

Attributes contain additional information linked to

nodes and edges, commonly string or numerical values.

When taking observing relation between nodes, it can

be symmetric or asymmetric. Symmetric relation

means that the edge may be passed through from any

of node to opposite one and if it is not symmetric, edges

have both beginning and the end, so called the head and

the tail. There are also undirected graphs, where

undirected edge is shown as two directed edges.

Different types of nodes and edges are also

common in some applications. Node and edge labelling

identifies distinct kinds of relations.

Multigraphs and hypergraphs are special kinds of

graphs. In multigraphs, two nodes are possibly

connected by multiple edges, and in hypergraphs,

edges are replaced with hyperedges (which are

composed of unreasonable number of nodes).

2.2 Common Features Found in Huge

Graphs

Data represented in graph in real life is much different

than standard graphs by definition. Mostly, it is

because datasets are huge and number of edges is

bigger than anyone could imagine. However,

characteristics that are frequently found in large graphs

are that they contain more edged than it is expected to

be the maximum number of edges in a graph and there

is a power law distribution which means that some

nodes have more connections then there are expected

to occur.

Also, in huge graphs there is a small diameter which

reassures a short path to most other nodes in small

world property. There is a large connected component

found in great fraction of nodes and nodes are grouped

in clusters with big density of edges between them

(Chakrabarti & Faloutsos, 2006).

2.3 Applications of Graph Data and

Graph Databases

With the technology growth and increase in amount of

information in general, the need for storing large

amount of data has occurred. Both scientists and people

who work in those industries find graphs and networks

suitable for organizing and representing large amount

of data where nodes stand for entities and edges

represent relationships between those entities.

One on the most popular datasets that is considered

to best fit in graphs are organizations and social groups,

and with increase of usage of social media, social

networks are also one of the most popular examples of

graph data.

One of the most successful tools to examine the

architecture of different kinds of social groups is Social

Network Analysis. Social Network Analysis is focused

on determining the pattern of people’s interaction. It is

done by following mathematical algorithms and

systematic analysis of empirical data. However, it has

applications in organizational behaviour, spread of

contagious diseases, social support, mental health,

diffusion of information and animal social

organization, counter terrorism, viral marketing etc

(SNA, 2020).

With the increasing use of social networks where

people can interact with each other and share

information, it has become important to have

possibility to track all the relationships and also

interactions. Interactions can also be found in library

catalogues or scientific paper repositories.

World Wide web is also one of examples that can

be viewed as a directed graph with its nodes and edges

(Kumar et al., 2000). This graph has more than one

billion nodes and is expected that the number of nodes

and edges will grow exponentially with time. It is

observed for many reasons, primarily mathematical,

sociological and commercial.

In addition to World Wide Web, some other web

pages that are organized like huge networks or graphs

should be mentioned. Some of them are Wikipedia,

Amazon, Google etc. which are the best example of

nodes and connections between them, that can

represent various of things, maybe in most researches

they try to track interest of users by giving them

additional information they could be interested in,

followed by links where they can find those

information.

Scientists dealing with new trends in data mining

also find graph data and graph database features

interesting (Chakrabarti & Faloutsos, 2006). They tend

to analyze social roles and interactions, and graph

databases help them manage data, but also graph

generators create synthetic but enough realistic graphs

which follow the patterns in real-world graphs.

Large studies of proteins and genetic interactions

are presented with interaction networks where nodes

represent proteins. An example of database which

demonstrates the complexity of graph data is Protein

Data Bank (PDB) and many researches on nodes and

relationships between them but also roles in those

protein networks can be made based on that kind of

data (PDB, 2020).

Another real-life example is traffic and

demonstration of cities or places people can visit. In

that cases, nodes represent places, and edges show

https://dl.acm.org/doi/10.1145/335168.335170
https://www.rcsb.org/

connections between them. The understanding of

graphs could help users find the best or quickest or

cheapest route to plan their journey.

3 Popular Benchmarks

During ages, relational databases were standard and as

a result, the most of database benchmarks are meant to

appraise relational database queries. Those

benchmarks highlight queries with selections, joins and

sorting operations. As the use of graph databases is

starting to be more frequent and graph databases focus

on different types of queries than relational databases,

benchmarks made for rational databases are not

appropriate for measuring their efficiency.

3.1 Relational Databases

When talking about relational database benchmark,

one of the most popular benchmarks are TPC-C and

TPC-H, both products of TPC (Transaction Processing

Performance Council), an organisation whose main

activities are creating benchmarks and creating

processes for monitoring benchmarks they created

(TPC, 2020). TPC-C benchmark describes the whole

environment in which users perform activities. It

represents only five most commonly used transactions

(in wholesale supply system), but is not meant for any

specific industry. Although it is mostly use to represent

industries that sell or distribute a product. On the other

hand, TPC-H simulates decision support system that

works with large amount of complex data and it

represents all kind of industries.

Benchmarking tools that are based of TPC-C

simulate workload of more users with one machine and

most of them are made for a single database

management system. Therefore, benchmark logic

should be adjusted to database management system’s

properties or should be even implemented in it (Lima

et al., 1970).

3.2 Object Oriented Databases

Relational databases and graph databases have many

differences, but object-oriented databases and graph

databases have more in common. Data stored in object-

oriented databases can be understood as a graph, but

with objects and relationships between them instead of

nodes and edges.

One of the most common benchmarks for object-

oriented databases is OO1 (Object Operation 1). The

OO1 benchmark evaluation includes measures for

inserting objects (adding a set of objects and relations

between them to database), looking up objects (finding

set of object for specific object identifier) and

traversing connections between them (performing 7-

hop operation that starts at any given node). It is

designed so it can be applied to object-oriented,

relational, network or hierarchical database systems

and even some custom application-specific database

systems (Cattell & Skeen, 1992). When working with

object-oriented databases, OO1 determines dataset that

consists of one type of object with firmed number of

edges. Graphs that are made of those kinds of objects

are mostly regular.

OO7 is also commonly used benchmark for object-

oriented databases. The database consists of three

different types of objects that form a tree whose depth

is seven and all objects have firm number of relations

between them. OO7 contain traversal queries and

general queries. It is more complex and thorough then

OO1, and it was designed to support multiuser

operations (Carey et al., 1993).

Even though object-oriented databases form graphs,

those graphs are much different than typical data that

is stored in graph databases. As mentioned before,

graphs in graph databases are mostly irregular, as the

number of nodes can vary a lot and they are also

creating clusters with small diameters. When analyzing

graph data, relationships are of great interest (shortest

path, patterns etc.), and in object-oriented databases

more attention is given to objects and their attributes.

3.3 XML Databases

XML databases are another type of databases which

go after model that relate entities. In XML databases,

data and attributes form a tree. XMark is a popular

benchmark for XML databases that is designed by

taking XML standards in consideration. The queries

round up basics of XML processing in database

management systems. Some of them are querying for

NULL values, full-text search, sorted data, path

expressions etc (Schmidt et al., 2002).

XML databases and graph databases have some

similarities, but XML forms trees which are only one

subbranch of graphs.

3.4 Resource Description Framework

Web researchers, developers and scientists

introduces a language to represent metadata on the

Web, and it is known as Resource Description

Framework (RDF). From database perspective, RDF is

considered to be an extension of data models used in

database management systems, mostly in graph

database models, as a collection of conceptual tools

that describe real-world entities (in most cases those

entities are metadata on the Web) (Angles & Gutierrez,

2005).

Together with RDF, knowledge community has

come up with SPARQL, a query language that helps

describe relationships between entities. There is a

benchmark for SPARQL queries, called LUMB, which

is actually a benchmark for OWL (Web Ontology

Language) Knowledge Base Systems that is part of

W3C’s Semantic Web Technology stack and includes

RDF, SPARQL, etc (Guo et al., 2005).

http://www.tpc.org/default5.asp
http://cattell.net/vita/Cattell-TODS.pdf
http://pages.cs.wisc.edu/~dewitt/includes/benchmarking/oo7.pdf
http://resources.mpi-inf.mpg.de/departments/d5/teaching/ss03/xml-seminar/Material/SWKCMB02.pdf
https://link.springer.com/content/pdf/10.1007/11431053_24.pdf

3.5 Graph databases

Since graph databases are much younger than for

example relational databases, there are less

benchmarks for graph database models. The most

popular benchmark meant for measuring efficiency of

graph data is High Performance Computing (HPC)

Scalable Graph Analysis Benchmark (Bader et al.,

2009).

3.5.1 HPC Scalable Graph Analysis Benchmark

HPC Scalable Graph Analysis Benchmark was

designed by scientists and researchers in collaboration

with developers from several companies. They tried to

gather the most commonly used and therefor the most

representative operations, like graph loadings, graph

traversals and short navigations (Dominguez-Sal et al.,

2010).

This benchmark is made of different operations over

graph data and it simulates a power law distribution.

The operations are: insertion of a graph database,

restoring edges whose weight is the greatest,

performing k-hops and measuring the number of edges

traversed per unit of time.

3.5.2 LinkBench

LinkBench is a new synthetic database benchmark

based on the Facebook social graph. It is based on

traces from making databases storing social graph data

at Facebook and reflects real-world database

workloads for social applications. It is known that data

gathered from social networks is one of the typical data

stored in graph databases.

 LinkBench operates in two phases. First, it

generates and bulk-loads a synthetic social graph.

Then, it benchmarks the graph that is stored with

generated workload of database queries and takes

statistics about how efficient it is. All parts of process

have many parameters that can be changed to examine

the workloads that have other characteristics

(Armstrong et al., 2013).

4 Graph Database Benchmark

Evaluation

When creating a graph database benchmark, there are

few elements that should be considered. Most

important is the structure of graph database and graphs

itself. Then, benchmark designer should also take care

of fields of business that are most likely to use graph

database and which queries are expected to be used in

those cases. Graph structure and most frequently used

graph types are presented in chapter 2, and in this

chapter the other elements are described.

4.1 Types of Graph Operations

There are few types of operations used in fields that

are most frequently expected to be organized as graphs.

Those are operations that can useful in any framework.

They let us get information from graph (node, value of

an attribute, neighbour nodes) or they let us create,

change or delete graph or part of the graph. Operations

that are mentioned need to be broaden in order to be

adequate for use in examples from previous chapter.

Operations can be grouped by types: traversals,

connected components, communities, graph analysis,

centrality measures, pattern matching and graph

anonymization (Dominguez-Sal et al., 2011).
One of the typical operations are traversals. These

are operations that examine the neighbourhood of a

node following recursive principal until assigned depth

or node is hit (Ciglan et al., 2012). There is a difference

in traversals in directed and undirected graph because

in directed graphs the direction is set from tail to head.

One of traversals is also finding shortest path or

cheapest journey. k-hops are other common traversals,

and by calculating k-hops is meant to find out which

nodes are k nodes away from the root node.

Connected components are subsets of nodes for

which there is a connection between any of two nodes.

Therefore, a single node can be part only of one

connected component of the graph. In many examples,

to determine connected components or bridges that are

crucial for making components connects, is of great

significance.

Similar to connected components, communities are

set of nodes that are closer to each other than to any of

the nodes that are not part of the community. It is

definitely often found in social networks. Subgroup

could be communities that are made of clusters where

hierarchy is of great importance. Leskovec et al. that

the structure of large social and information networks

follows the pattern of graphs but when adding more

and more information, actually nodes and edges, the

community properties start to fade and graph

partitioning algorithms become unavoidable.

Graph analysis gives more information about

topology, complexity and objects that are found in

graphs. It is done to find patterns in graphs and to get

more information about role of objects, in this case

nodes and edges. Part of graph analysis is measuring

density, diameter, degree of transitivity etc.

Centrality measures as operation give information

of how a single node is imbedded in entire network.

Pattern matching is an operation that recognizes

patterns and helps fine homomorphisms or

isomorphisms.

Graph anonymization gives a duplex graph that has

much in common with the original graph. It is used

when datasets are modified to hide personal

information.

4.2 Different Query Categories

Dominguez-Sat et al. (2010) have built few categories

to group different operation used in a specific database:

https://www.ac.upc.edu/app/research-reports/html/RR/2010/45.pdf
https://dl.acm.org/doi/pdf/10.1145/2463676.2465296
https://upcommons.upc.edu/bitstream/handle/2117/24027/2010_tpctc.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.716.4053&rep=rep1&type=pdf

transformation/analysis, cascaded access, scale,

attributes and result. Transformations are operations

that create new types of objects or change value of an

attribute. The other queries are analysis. Queries do not

change the graph but they serve as access to secondary

storage that is necessary because memory is often not

big enough for all the results that are generated in

process of querying.

Cascaded pattern assume that a query performs

neighbour operations and that the depth is at least two.

On the other hand, noncascade operations do not

request the neighbours of observed node. Scale gives

two types of queries, global and neighbourhood ones.

Attributes differentiate queries by the attribute set it

accesses (edge, node, mixed or no attributes accessed).

Three types of results are found: graphs, aggregated

results and set. Most common output is graph which is

usually part of the original graph. Aggregates are

frequently histograms, while sets are made of entities

or some other sets that are not graphs.

In benchmarking, queries should serve as workload

of the real surrounding and therefore should be tested

on the observed application. There are different graph

operations and queries, but they mostly follow the

same pattern. Most operations approach edges and

information that are stored in them which are actually

the most important information the graph has. Graph

database should have ability to save different type of

results in objects that are temporary to help operations

proceed to the end. Some of the result should be stored

in graph in order to help analyzing graphs.

Since some operations are extremely complex, it

could be impossible to calculate them, so it should be

taken in consideration that sometimes the approximate

values could also be useful and satisfying.

4.3 Experiments

Dominguez-Sat et al. (2011) also claim that

experimental setup and measurement make the most

important parts of benchmark. It should be well defined

to grant legitimate testing of solutions in different

environments. As benchmarks have become more

sophisticated and databases more complex, it is not

enough for benchmarks to focus on response time of

queries but also pricing, answer completeness etc.

New benchmarks let the sizes of datasets to be

scaled so the comparison is fair. One example of

scaling is algorithm presented by Leskovec et al.

(2010). It calculates one specific measure on the basis

of which synthetic graph that imitates the features of

desired graph is created. Also, data partition, indexing,

redundancy and data reorganization should be clearly

defined. As it is common when working with

databases, ACID (atomicity, consistency, isolation,

durability) features should be respected. Experimental

process is expected to minimize side-effects of other

events that could affect the experiment results. It is

done in three phases: computer warm-up, query

generation (to define order of queries) and

observational sampling procedure (sets the number of

executions for queries and how they are compiled).

Phases can and should be modified depending on goals

and applications.

The most common measures in graph benchmark

are load time, which give the time needed for loading

the dataset, size of the graph. Also, query response

time, that represents the time passed until the query

gives the results, and throughput, which stands for ratio

of number of queries that are completed and time that

was required for those queries to be completes. In the

end, there are price and power consumption. Price

includes the costs of hardware, software, license and

other costs that occur, while power consumption

evaluates demands regarding the use of energy.

There are some special metrics, for example, HPC

Scalable Graph Analysis Benchmark came up with

measure that gives the number of traversals per second.

On the other hand, Duan et al. (2011) gave another

measure and called it a macroscopic metric or

coherence. They worked with RDF benchmarks and

their measure combines more different primitive

metrics and measures the structuredness of different

datasets (Songyun et al., 2011). Measures that can be

determined in benchmarking are various, but which

measures are about to be selected depends on

benchmark and the goals. It is to be expected that

benchmarks that are done inside industry would pay

more attention on price (actually, cost of queries) and

throughput. On the other hand, benchmarks that are

done in research purposes will more likely expect to

give answers on how efficient observed operations are

in different environments.

Table 1. Benchmarks and supported features

 L
D

B
C

H
P

C

M
cC

o
ll

X
G

D
B

en
ch

W
G

B

S
o

ti
ri

o
s

Bulk

operations
 ID ID

Single

operations
All ID All ID

Shortest

path
 x x

BFS / DFS x x

Multiple

node types
x

Centrality x x x x x

K-hop x

Transaction x

Scalable x x x x

Synthesized x x x x x

Directed x x

Weighted x

Table 1. shows popular benchmarks and their

supported characteristics or features, with emphasis on

queries and data structure (Tang, 2016). The tested

benchmarks include Linked Data Benchmark Council

(LDBC) benchmark (Angles et al., 2014), HPC and

McColl benchmark (McColl et al., 2014).

 First two rows show their support for basic bulk

and single operations, i.e. insert, select, delete and

update. ID in cells stands for insert and delete

operations.

It can be seen that the most benchmarks do not

support shortest path operations, breath-first and depth-

first searches. Also, they generally do not support k-

hop operations. This is certainly a great disadvantage,

because those operations are common in majority of

graph database usages, but users are not able to

measure their performance.

Centrality, a measure of node importance in a

graph, is supported by all benchmarks except

XGDBench, which, on the other hand, is the only one

that supports transactions.

The last four characteristics refer to the type of

supported data and potentials of generators of synthetic

data. As it can be seen from the table, most of the

observed benchmarks support generation of synthetic

data and have the possibility to scale them according to

the benchmark or user needs. Directed graphs are

supported in two benchmarks and weighted graphs

only in one benchmark.

5 Conclusion

In this paper, important characteristics of graphs

and graph databases are presented. Also, it is shown

that there exists a need for designing more specific

graph database benchmark. One of the main reasons is

because graphs and graph databases are used in many

different industries which could gain profit out of it and

improve their work.

When designing a benchmark, it should be taken in

consideration that graph characteristics are important,

that it is necessary to be informed about the application

of database and to determine which properties are

about to be measured.

Also, different existing benchmarks are presented.

In future work, it is planned to examine the differences

in synthetic and real-world workloads, and to compare

their advantages and disadvantages, but also to give

recommendations when creating synthetic workloads.

When examining graphs and their structure, it is

necessary to find the quickest way to determine

patterns that occur more often so that communities and

subgraphs can be found and maybe some insights can

be made on representative subgraphs instead of the

graph in whole.

References

Angles, R., Boncz, P., Larriba-Pey, J.L., Fundulaki, I.,

Neumann, T., Erling, O., Neubauer, P., Martínez-

Bazan, N., Kotsev, V., Toma, I. (2014) The Linked

Data Benchmark Council: A graph and RDF

industry benchmarking effort. ACM SIGMOD

Record. 43. 27-31. 10.1145/2627692.2627697.

Angles, R. & Gutierrez, C. (2005) Querying RDF Data

from a Graph Database Perspective. Lecture Notes

in Computer Science. 3532. 346-360.

10.1007/11431053_24.

Armstrong, T., Ponnekanti, V., Borthakur, D.,

Callaghan, M. (2013) LinkBench: a database

benchmark based on the Facebook social graph.

Proceedings of the ACM SIGMOD International

Conference on Management of Data. 1185-1196.

10.1145/2463676.2465296.

Bader, D., Feo, J., Gilbert, J., Kepner, J., Koetser, D.,

Loh, E., Madduri, K., Mann, B., Meuse, T.,

Robinson, E. (2009) HPC Scalable Graph Analysis

Benchmark v1.0. HPC Graph Analysis.

Bok K., Kim C., Jeong J., Lim J., Yoo J. (2018)

Dynamic Partitioning of Large Scale RDF Graph in

Dynamic Environments. In: Lee W., Choi W., Jung

S., Song M. (eds) Proceedings of the 7th

International Conference on Emerging Databases.

Lecture Notes in Electrical Engineering, vol 461.

Springer, Singapore

Carey, M., DeWitt, D., Naughton, J. (1993) The 007

Benchmark. ACM SIGMOD Record. 22. 12-21.

10.1145/170035.170041.

Cattell, R. G. G. & Skeen, J. (1992) Object operations

benchmark. ACM Trans. Database Syst. 17, 1

(March 1992), 1–31.

DOI:https://doi.org/10.1145/128765.128766

Chakrabarti, D. & Faloutsos, C. (2006) Graph mining:

Laws, generators, and algorithms. ACM Comput.

Surv. 38, 1 (2006), 2–es.

DOI:https://doi.org/10.1145/1132952.1132954

Ching, A., Edunov, S., Kabiljo, M., Logothetis, D.,

Muthukrishnan, S. (2015) One trillion edges: Graph

processing at facebook-scale.

Ciglan, M, Averbuch, A., Hluchy, L. (2012)

Benchmarking Traversal Operations over Graph

Databases. IEEE 28th International Conference on

Data Engineering Workshops, Arlington, VA, pp.

186-189, doi: 10.1109/ICDEW.2012.47.

Dominguez-Sal D., Martinez-Bazan N., Muntes-

Mulero V., Baleta P., Larriba-Pey J.L. (2011) A

Discussion on the Design of Graph Database

Benchmarks. In: Nambiar R., Poess M. (eds)

Performance Evaluation, Measurement and

Characterization of Complex Systems. TPCTC

2010. Lecture Notes in Computer Science, vol 6417.

Springer, Berlin, Heidelberg

Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vañó,

A., Gómez-Villamor, S., Martínez-Bazan, N.,

Larriba-Pey, J.L., Shen, H., Pei, J., Özsu, M., Zou,

L., Lu, Jiaheng, Ling, Yu, Ge, Zhuang, Yi, Shao, Jie.

(2010) Survey of Graph Database Performance on

the HPC Scalable Graph Analysis Benchmark. 37-

48. 10.1007/978-3-642-16720-1_4.

Duan, S., Kementsietsidis, A. Srinivas, K., Udrea, O.

(2011) Apples and oranges: A comparison of RDF

benchmarks and real RDF datasets. Proceedings of

the ACM SIGMOD International Conference on

Management of Data. 145-156.

10.1145/1989323.1989340.

Guo, J., Pan Z., Heflin, J. (2005) LUMB: A benchmark

for OWL knowledge base systems. Semantic Web

Journal.

Hong, L., Zou, L., Lian, X., Yu, P.S. (2015) Subgraph

Matching with Set Similarity in a Large Graph

Database. IEEE Transactions on Knowledge and

Data Engineering, vol. 27, no. 9, pp. 2507-2521.

10.1109/TKDE.2015.2391125.

ISNA. International Network for Social Network

Analysis. Retrieved from www.insna.org/what-is-

sna.

Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar,

D., Tompkins, A., Upfal. E. (2000) The Web as a

graph. In Proceedings of the nineteenth ACM

SIGMOD-SIGACT-SIGART symposium on

Principles of database systems (PODS ’00).

Association for Computing Machinery, New York,

NY, USA, 1–10.

DOI:https://doi.org/10.1145/335168.335170

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos,

C., Ghahramani, Z. (2008) Kronecker Graphs: An

Approach to Modeling Networks. Journal of

Machine Learning Research. 11.

10.1145/1756006.1756039.

Leskovec, J., Lang, Kevin, Dasgupta, K., Anirban,

Mahoney, Michael, W. (2008) Statistical properties

of community structure in large social and

information networks. Proceeding of the 17th

International Conference on World Wide Web 2008,

WWW'08. 10.1145/1367497.1367591.

Lima, M., Sunyé, M., Almeida, E., Direne, A. (1970)

Distributed Benchmarking of Relational Database

Systems. 10.1007/978-3-642-00672-2_49.

Mccoll, R., Ediger, D., Poovey, J., Campbell, D.,

Bader, D. (2014) A performance evaluation of open

source graph databases. PPAA 2014 - Proceedings

of the 2014 Workshop on Parallel Programming for

Analytics Applications. 14. 11-18.

10.1145/2567634.2567638.

PDB. Protain Data Bank. Retrieved from

www.rcsb.org/

RDF/XML Syntax Specification (Revised). Retrieved

from www.w3.org/TR/REC-rdf-syntax/.

Schmidt, A., Waas, F., Kersten, M, Carey, M.J.,

Manolescu, I., Busse, R. (2002) XMark: a

benchmark for XML data management. In

Proceedings of the 28th international conference on

Very Large Data Bases (VLDB ’02). VLDB

Endowment, 974–985.

SWAT Projects – the Lehigh University Benchmark

(LUMB). Retrieved from

http://swat.cse.lehigh.edu/projects/lubm/

Tang, Y. (2016) Benchmarking Graph Databases with

Cyclone Benchmark. Graduate Theses and

Dissertations. 15820.

https://lib.dr.iastate.edu/etd/15820

TPC. Transaction Processing Performance Council.

Retrieved from www.tpc.org

http://www.insna.org/what-is-sna
http://www.insna.org/what-is-sna
http://www.rcsb.org/
https://www.w3.org/TR/REC-rdf-syntax/
http://swat.cse.lehigh.edu/projects/lubm/
https://lib.dr.iastate.edu/etd/15820
http://www.tpc.org/

