
Identification of reusability artifacts in mobile application

development process

Zlatko Stapić

University of Zagreb, Faculty of Organization and Informatics Varazdin

Laboratory for Applied Software Engineering

Pavlinska 2, HR 42000 Varazdin, Croatia
zlatko.stapic@foi.unizg.hr

Abstract. Development of mobile applications is a

challenging task which differs from traditional

software development, and needs to address the

business and development specific challenges. Our

research focuses on development specific challenges.

The main goal of this research is to identify reusability

artifacts in mobile application development process

targeting two or more mobile platforms, and to create

the basis for more efficient and interoperable cross-

platform mobile development process. After identifying

all artifacts in the development process for one target

platform, we have performed the reusability analysis

for the second platform. We found that 66% of artifacts

are completely or partially reusable.

Keywords. software development, mobile application
development, development methodologies, reusability

1 Introduction

Traditional and mobile development differ in several
important aspects which makes mobile development a
challenging task. There are different classifications,
but Hosbond (2005) focuses on the two main sets of
challenges that should be addressed in mobile systems
development. These are business related and
development specific challenges. In this research we
will focus on development specific challenges and will
give special attention to the usage of methodologies
which according to some authors, like Rahimian and
Ramsin (2008), Spataru (2010) or La and Kim (2009),
should be firstly addressed.

Classic or agile software development
methodologies should be adapted for the development
of mobile applications as the existing ones do not cover
the specific mobile targeted requirements (La & Kim,
2009). There are attempts from several authors to
create new methodologies in order to cover the gaps in
the domain of mobile applications.

Along with the methodology related problems, the
fragmentation problem forces the developers of mobile
applications to focus on only specific platforms and

versions (Shah et al., 2019), but as the development of
mobile applications primarily aims a wide range of
users, such approach is not the preferable option and
the development teams reach for different solutions of
the problem proposed by professional and scientific
community. First, worth to mention is the approach
that enables the development teams to use a mediatory
language or just mediatory transform engine to code
for several target platforms. Some of the most
influential projects are React Native (Facebook Inc.,
2020) and Flutter (Google Inc., 2020). Although, these
attempts have some advantages they also have
significant drawbacks, like their dependability on the
efforts invested in the transform engine, specific APIs
and specific domain, the lack of control over generated
source code and similar. Another possible solution to
the problem could be the introduction of adapter
applications (adapters) as native applications for every
target platform. According to Agarwal et al. (2009) this
is one of the two main techniques for handling
fragmentation. As standardization of APIs in mobile
world is still not possible, the usage of programming
techniques whereby the interface calls are wrapped, i.e.
abstracted, in distinct modules which are then ported
across the platforms, is left as the other solution. The
representatives of this approach are MobiVine
(Agarwal et al., 2009), Adobe PhoneGap (PhoneGap,
2020) or Adobe AIR® (Adobe Inc., 2020). Almost all
of the drawbacks stated for existing solutions that
introduce a transform engine are also present in this
solution. Finally, the third approach is to use web
technologies and to develop cross-platform web
applications, but this approach is out of our scope as it
differs in many aspects (which also have their own
drawbacks) from the basic assumptions taken in this
research.

Therefore, in our research we are focused on
finding a solution that would enhance methodological
interoperability among teams working on the same
application but in different (and native) development
environments. In the context of more comprehensive
research, we aim to identify what artifacts (required
inputs and outputs of methodologically and
methodically defined development steps) emerge

during mobile application development, whether and to
what extent there are similarities between these
artifacts so they could be reusable during the
development process for two or more mobile
platforms, and to create the basis for more efficient and
interoperable process of multi-platform mobile
applications development.

The paper is structured as follows. In section two
we bring the methodological context and artifacts
analysis setup while in third section we present the
identified artifacts and their types. Section four brings
the reusability analysis results while the last section
concludes the topic and looks forward to the future
research.

2 Analysis setup

In our previous research (Stapic et al., 2016), we
performed a literature review in order to identify newly
created methodologies targeting the development of
mobile applications and we have identified 14 different
methodologies. However, only one of these
methodologies was reported to be used in practice –
Mobile-D.

Mobile-D process, as described in (P Abrahamsson
et al., 2004; Supan et al., 2013; VTT Technical
Research Centre of Finland, 2006), includes five
phases that are executed in partially incremental order
(see Fig. 1). The aim of the first phase, called Explore,
is to prepare the foundation for future development.
The Initialize phase should describe and prepare all
components of the application as well as to predict
possible critical issues of the project.

Figure 1. Mobile-D process (VTT Technical Research

Centre of Finland, 2006)

The Productionize and Stabilize phases are
executed iteratively in order to develop all other
features of the mobile product. Iterations start with
planning day in Productionize phase. The first activity
is post-iteration workshop which aims to enhance the
development process to better fit the needs of the
current software development team. Requirements
analysis, iteration planning and acceptance test
generation tasks follow and are executed during the
planning day. Working day is based on implementation
through test driven development, pair programming,
continuous integration and refactoring. This day ends
with the task of informing the customer on new
functionality. Finally, the release day includes the
activities of integration and testing. The Stabilize phase
has the goal to finalize the implementation along with

integrating subsystems if necessary. As this phase can
contain additional programming and development, the
activities are very similar to the activities in the
Productionize phase. The only additional activity
concerns documentation wrap-up. Iterations should
result in a working piece of functionality at user level.
Finally, System Test and Fix phase aims to detect if the
produced system correctly implements the customer
defined functionality. It also provides the project team
feedback on the systems functionality and the defect
information for the last fixing iteration of the Mobile-
D process. This last iteration is not obligatory, but
when fixing is needed it consists of the same activities
as other implementation iterations already explained (P
Abrahamsson et al., 2004; Supan et al., 2013; VTT
Technical Research Centre of Finland, 2006).

Mobile-D strongly suggests the usage of Test
Driven Development (TDD) which is connected to all
Mobile-D phases . The basics and the state of the art in
TDD can be found in (Hammond & Umphress, 2012).
The purpose of TDD is to give the developers
confidence that the code they produce works, as well
as to guide the design of the code towards an easily
testable structure. Additionally, the refactoring practice
is also based on TDD to ensure that changes made to
the code do not break any functionality (P.
Abrahamsson et al., 2005).

In order to systematically observe the development
process and to identify the artifacts created during it,
we developed a prototype application, namely
KnowLedge, for Android platform. The application
intends to enable users learn and/or share knowledge in
an interactive and social manner. Among others, the
basic usage included functional requirements like
browsing through categories to find existing
knowledge on a topic or placing a request for a new
explanation, instruction or tutorial, sharing knowledge
in groups etc.

The overall system architecture comprises service
oriented architecture, mobile application, remote
database and usage of the global positioning system. In
addition, as it can be seen in Fig. 2, the mobile
application architecture is also intended to be multi-
layered with three distinct but connected layers. The
internal cohesion (see (Miller, 2008)) of the presented
modules should be high, and at the same time the
external coupling should be kept low.

Figure 2. Architecture of KnowLedge application

The Mobile-D process with its clear technical
specification was well documented and easy to follow
and the overall development process took less time
than initially planned. A few screenshots of the created
application are visible in Fig. 3.

Figure 3. Screenshots of KnowLedge mobile application

3 Identification of artifacts

As there are many definitions of artifact (e.g. from
Hilpinen (2011) or from Parker (2011)), we have
adopted the definition from Conradi (2004) who says
that artifact is “any piece of software (i.e. models,

descriptions, code) developed and used during

software development and maintenance”. As the goal
of this research was to analyse only the structural and
semantic aspects of the sets of artifacts, we performed
an analysis only from the semantic concept view, while
other possible views, such as procedural concept view

or pragmatic concept view are not covered by it. Thus,
we only observed the artifacts and their connection to
the activities and tasks as it can be seen in Fig. 4.

Figure 4. Focusing semantic of artifacts and their origin

We performed the artifacts analysis in two steps.

Firstly, we analysed the Mobile-D process library (P.
Abrahamsson et al., 2005) and identified the
documents and other platform-independent
deliverables at a high level of abstraction. Secondly, as
the approach of identifying and grouping the artifacts
only according to the phases of the origin would not be
a good way, and as during the implementation phase
we collected the additional data on the artifacts, we
systematized and described all identified artifacts using
the template presented in Table 1.

Thus, from the conceptual point of view, we created
a solid basis for identifying not only the documents that
had been created, but also other artifacts that might be
hard to identify if the project was performed outside
the laboratory.

Table 1 shows a part of the list of the identified
artifacts, along with their initial classification,
description and connection with the Mobile-D phases.
We used standard CRU notation for denoting the
artifacts that were created (C), used/read (R) and
updated (U).

Table 1. An excerpt from the list of identified artifacts in development process for Android

Artifact name Type Description

Phases inputs and outputs

I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

Mobile-D process
library

Document

Process library describing the Mobile-D
methodology in detail. Used as methodology
guidelines in every phase. (P. Abrahamsson et
al., 2005)

R R R R R

Product proposal Document
Generated before the development process.
Describes the initial and general idea on the
product.

R

Project plan Document

Contains all information on project including
definition of customer group, scope, planned
activities and their duration, plans on
documentation etc. Aligned with agile practices,
this document is also updated during the
iterations.

 C R U R U

… … …

The identification process resulted in total of 60
different artifacts for Android development process,
which are then analysed in order to see which of these
artifacts are potentially reusable in development
process for other platform such as iOS. These artifacts
are grouped into 12 different categories as presented in
the table below. The full list is available in appendix 1.

Table 2. Types of artifacts in Android development

Artifact

type
Description

Document

Represents used documents or created
artifacts that are published as documents
during or at the end of development
process.

Embedded
document

Represents document that could be
observed as stand-alone artifact, but is
usually included in some other
document.

Template
Represents templates that are used to
create some artifacts.

Model

Represents models that are created
during the development process. Models
could be observed as stand-alone
artifacts, but are usually presented as a
part of some document.

Model
element

Represents the atomic level (i.e. integral)
artifact that could be observed as stand-
alone and is used to create models.

Code
Represents any artifact created during the
implementation and is written in any
programming or description language.

3rd party
example

Represents code artifacts created by third
party and used as examples of
implemented functionality or to solve
some programming issue.

Software
tool

Represents software tools used during the
entire project.

License
Represents individual-specific unique
key that is obtained or used during the
development process.

Standard
Represents document containing formal
and internationally recognized
description of some concept or element.

Publishing
resource

Represents resources that are created
during the development process and are
used in publishing purposes.

Product
Represents final product as most
important project deliverable.

As the application was designed to cover the most

common mobile application development use-cases
(see Fig.4), it is not expected that the number of
artifacts or their types would increase significantly if
the general size of the application would be bigger. The
KnowLedge application along with belonging tests and
backend services has approximately 12.000 lines of
code (LOC).

Some documents contain parts (document artifact)
that should be observed separately which is why we
identified them as a specific (new) type. Similarly, the

model element could be observed as a stand-alone
artifact used to build more complex models.

4 Reusability analysis

Mijač (2015) defines reusability as property of a
software asset that indicates its probability of reuse,
while the reuse is defined as the use of existing
software and software knowledge to construct new
software. In the context of the following analysis, we
have adapted the mentioned definitions.

In the cross-platform reusability analysis we found
that 50 artifacts (71.43% of Android identified
artifacts) are mutual to both development cases.
Additionally, many of these mutual artifacts are
platform independent as being products of
methodological approach. In total, 20 out of 50
identified mutual artifacts (40%) should be created or
obtained only once, as these were identical in both
development processes. On the other hand, there are 13
artifacts (26%) that could be partially reused while
performing the development process for the second or
any other target platform. Finally, we recognized 17
artifacts (34% of all common artifacts) with a very low
level of possible reuse. They were classified as ones
that should be developed from scratch for every target
platform. A preview of results of the cross-platform
analysis can be seen in Table 3. All other artifacts were
classified as platform dependent artifacts, which also
have some reusable semantic or syntactic parts like
sequencing, iterations, algorithms etc. The full list of
common artifacts, along with their classification is
available in appendix 2.

Table 3. An excerpt from the list of mutual artifacts in
Android and iOS case

Artifact name Identical
Partially

reusable
Different

Mobile-D process
library

X

Product proposal X
Initial requirements
document

X

Project plan X
Project plan checklist X
Project plan checklist
template

X

Measurement plan X
Architecture line
description

 X

…

In total, 33 artifacts (66% of the mutual artifacts)

are completely or partially reusable which encouraged
us and provided a solid basis and motivation for the
next phases of our research towards methodological
interoperability and artifact reusability.

5 Conclusion

In this research we have presented the results of
reusability analysis of methodological (i.e. process
related) and development artifacts that arise in
development of mobile applications for two or more
target platforms. Firstly, we analysed the Mobile-D
process library and identified the documents and other
platform-independent deliverables at a high level of
abstraction. Secondly, we collected the additional data
on the artifacts and identified 60 different artifacts for
Android development process which are grouped in 12
different categories. In the cross-platform reusability

analysis that followed, we found that 71.43% of
artifacts are common and present in all development
processes in multi-platform development, while 66%
of these are completely of partially reusable confirming
that artifacts reusability presents solid basis for
improvement in multi-platform mobile application
development process.

In our further research we would like to
semantically describe the methodology driven
development process as well as the artifacts which
arise in it, with the special focus on the reusable
artifacts, in order to create a novel methodological
framework for development of multi-platform native
mobile applications.

Acknowledgments

The author would like to thank the reviewers for their
valuable comments and suggestions that significantly
improved this paper.

References

Abrahamsson, P, Hanhineva, A., Hulkko, H., Ihme,
T., Jäälinoja, J., Korkala, M., Koskela, J.,
Kyllönen, P., & Salo, O. (2004). Mobile-D: An
agile approach for mobile application
development. Companion to the 19th Annual
ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and
Applications - OOPSLA ’04, 174.
https://doi.org/10.1145/1028664.1028736

Abrahamsson, P., Hanhineva, A., Hulkko, H.,
Jäälinoja, J., Komulainen, K., Korkala, M.,
Koskela, J., Kyllönen, P., & Eporwei, O. T.
(2005). Agile Development of Embedded
Systems: Mobile-D (Agile Deliverable D.2.3; p.
203). ITEA. http://www.agile-
itea.org/public/deliverables/ITEA-AGILE-
D2.3_v1.0.pdf

Adobe Inc. (2020). Adobe AIR | Deploy applications
across platforms and devices.
https://www.adobe.com/products/air.html

Agarwal, V., Goyal, S., Mittal, S., & Mukherjea, S.
(2009). MobiVine: A middleware layer to handle
fragmentation of platform interfaces for mobile
applications. Proceedings of the 10th
ACM/IFIP/USENIX International Conference on
Middleware, 24:1–24:10.
http://dl.acm.org/citation.cfm?id=1656980.165701
3

Conradi, R. (2004). Software engineering mini
glossary.
http://www.idi.ntnu.no/grupper/su/publ/ese/se-
defs.html

Facebook Inc. (2020). React Native · A framework
for building native apps using React.
https://reactnative.dev/

Google Inc. (2020). Flutter—Beautiful native apps in
record time. https://flutter.dev/

Hammond, S., & Umphress, D. (2012). Test driven
development. 158.
https://doi.org/10.1145/2184512.2184550

Hilpinen, R. (2011). Artifact. Stanford Encyclopedia
of Philosophy.
http://plato.stanford.edu/entries/artifact/

Hosbond, J. H. (2005). Mobile Systems Development:
Challenges, Implications and Issues. In J.
Krogstie, K. Kautz, & D. Allen (Eds.), Mobile
Information Systems II (Vol. 191, pp. 279–286).
Springer Boston. http://dx.doi.org/10.1007/0-387-
31166-1_20

La, H. J., & Kim, S. D. (2009). A service-based
approach to developing Android Mobile Internet
Device (MID) applications. 2009 IEEE
International Conference on Service-Oriented
Computing and Applications (SOCA), 00(MID),
1–7. https://doi.org/10.1109/SOCA.2009.5410278

Mijač, M., & Stapić, Z. (2015). Reusability Metrics of
Software Components: Survey.
https://doi.org/10.13140/RG.2.1.3611.4642

Miller, J. (2008). Cohesion And Coupling. MSDN
Magazine - The Microsoft Journal for Developers,
23(10). http://msdn.microsoft.com/en-
us/magazine/cc947917.aspx

Parker, P. M. (2011). Definition of artifact. Webster’s
Online Dictionary. http://www.websters-online-
dictionary.org/definitions/artifact

PhoneGap. (2020). Take the pain out of compiling
mobile apps for multiple platforms. PhoneGap
Build. https://build.phonegap.com/

Rahimian, V., & Ramsin, R. (2008). Designing an
agile methodology for mobile software
development: A hybrid method engineering
approach. Proceedings of Second International
Conference on Research Challenges in
Information Science, RCIS (2008), 337–342.
https://doi.org/10.1109/RCIS.2008.4632123

Shah, K., Sinha, H., & Mishra, P. (2019). Analysis of
Cross-Platform Mobile App Development Tools.
2019 IEEE 5th International Conference for
Convergence in Technology (I2CT), 1–7.
https://doi.org/10.1109/I2CT45611.2019.9033872

Spataru, A. C. (2010). Agile Development Methods
for Mobile Applications [PhD Thesis, University
of Edinburgh, The University of Edinburgh].
http://www.inf.ed.ac.uk/publications/thesis/online/
IM100767.pdf

Stapic, Z., Mijac, M., & Strahonja, V. (2016).
Methodologies for development of mobile
applications. 2016 39th International Convention
on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 688–

692.
https://doi.org/10.1109/MIPRO.2016.7522228

Supan, D., Teković, K., Škalec, J., & Stapić, Z.
(2013). Using Mobile-D methodology in
development of mobile applications: Challenges
and issues. Razvoj Poslovnih i Informatičkih
Sustava CASE 25, 91–98.

VTT Technical Research Centre of Finland. (2006).
Mobile-D Online Presentation (Web Application).
AGILE Software Technologies Research
Programme. http://agile.vtt.fi/mobiled.html

Appendix

1. Identified artifacts in development process
for Android, available at:
http://tiny.cc/identified_artifacts

2. Common artifacts in development for
different platforms and their reusability
classification, available at:
http://tiny.cc/common_artifacts

